Radiation Belts and Ring Current The Energetic Geospace

<u>G. D. Reeves,</u> H. E. Spence, B. A. Larsen, R. H. W. Friedel, C. A. Kletzing, D. G. Mitchell

Geospace revisited: Cluster/MAARBLE/Van Allen Probes September 2014, Rhodes Greece

We Want To Disentangle This Picture

Reeves, SW 2007; after Summers et al., 1998

And Ultimately Predict Storm-Time Responses

Reeves et al., GRL, 2003

My Outline Van Allen Probes Overview Energetic Geospace Events Event-Specific Modeling

A Statistical Look

now that Van Allen Probes has precessed through all local times

Solar & Geomagnetic Activity

Sunspot Number

Dst Index

Solar & Geomagnetic Activity

Dst below -50 nT less than 3% of the time

Dst Range	Number (hr)	Percent
-125 to -150	2	0.02
-100 to -125	14	0.14
-75 to -100	59	0.60
-50 to -75	218	2.22
-25 to -50	1158	11.81
0 to -25	8357	85.21

Dst

REPT Electrons 3 MeV

MagEIS Electrons 500 keV

HOPE Electrons 50 keV

HOPE Electrons I keV

Protons

Proton Flux 1 keV

Flux 1 keV

Electrons

Pressure by Species AE > 100nT

Energetic Geospace Events

detailed analyses of storm-time energization, losses, transport, plasma instabilities, and wave-particle interactions

Acceleration by Chorus Waves

October 2012: PSD Peaks

Reeves et al., Science, 2014

Definitive Evidence forLocal Acceleration

Uncertainty Analysis

Outer Boundary Measurements

Date, Time

←Van Allen ←GEO L=6.6

Increasingly Strong Evidence that <u>Chorus</u> Produces Local Acceleration

Reeves et al., Science, 2014

Chorus: Theory and Observations

2D Simulations match spectrum & pitch angle distributions

Thorne et al., Nature 2013

Chorus Wave Growth Rates

Single Component fit to HOPE data

2-Component fit to HOPE data

Fu et al., JGR 2014

Fu et al. PIC Simulation

Simulated Spectrum using 2-component fit to HOPE observations

Fu et al., JGR 2014

Event-Specific Modeling

new global models can now be driven by measured conditions to test competing processes

Global Simulations: DREAM-3D

PSD

PSD

Global Simulations: DREAM-3D

Event-Specific Simulations

Assumed Parameters

Boundary Conditions

 $\alpha=0$ PSD=0 (atmosphere) $\alpha=\pi/2$ dPSD/d $\alpha=0$ L=1PSD=0 (atmosphere)E=E_{max}PSD=0

background plasma density

Event-Spectific Data-Driven Parameters

Boundary Conditions

- $E = E_{min}$ Observed MagEIS 100 keV electrons
- L = L_{max} Last Closed Drift Shell (magnetopause)

Processes

Loss to time-dependent LCD (magnetopause) Loss to L-dependent atmospheric loss cone

Observed chorus amplitude and frequencies Derived chorus L and MLT distribution

Kp dependent radial diffusion

Losses in the first Dst dip

Outward Radial Diffusion to the (event-specific) LCDS (magnetopause) explains the rapid loss of electrons in the first phase of the storm

- Open boundary at L*=11
- Short lifetimes outside last closed drift shell (magnetopause)
- Radial Diffusion Only

Tu et al., GRL 2014

Adding Chorus Acceleration

We calculate D_{LL} and D_{aa} from the event-specific chorus model

Adding chorus waves produces acceleration but much less than observed

Using the Meredith statistics is worse. Observed waves are 10x the statistical model

Tu et al., GRL 2014

Adding Observed 100 keV Flux

Tu et al., GRL 2014

Conclusions

- In the two-year Van Allen Probes prime mission we sampled all local times with <u>unprecedented measurements</u> of waves, relativistic electrons, ring current ions, composition & plasma distribution. We are only now digesting the results.
- At the same time the Van Allen Probes enabled detailed, <u>quantitative analyses</u> of storm-time energization, losses, transport, plasma instabilities, and wave-particle interactions
- New global models can be run with <u>observed</u> simulation boundary conditions, seed population, magnetopause, wave distributions etc. This allows quantitative testing of the effects of and relative importance of different processes in <u>specific individual</u> radiation belt events.